Biophysical Attributes of CpG Presentation Control TLR9 Signaling to Differentially Polarize Systemic Immune Responses.

نویسندگان

  • Jardin A Leleux
  • Pallab Pradhan
  • Krishnendu Roy
چکیده

It is currently unknown whether and how mammalian pathogen recognition receptors (PRRs) respond to biophysical patterns of pathogen-associated molecular danger signals. Using synthetic pathogen-like particles (PLPs) that mimic physical properties of bacteria or large viruses, we have discovered that the quality and quantity of Toll-like receptor 9 (TLR9) signaling by CpG in mouse dendritic cells (mDCs) are uniquely dependent on biophysical attributes; specifically, the surface density of CpG and size of the presenting PLP. These physical patterns control DC programming by regulating the kinetics and magnitude of MyD88-IRAK4 signaling, NF-κB-driven responses, and STAT3 phosphorylation, which, in turn, controls differential T cell responses and in vivo immune polarization, especially T helper 1 (Th1) versus T helper 2 (Th2) antibody responses. Our findings suggest that innate immune cells can sense and respond not only to molecular but also pathogen-associated physical patterns (PAPPs), broadening the tools for modulating immunity and helping to better understand innate response mechanisms to pathogens and develop improved vaccines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nasal Immunization by (PLGA) Nanospheres Encapsulated with Tetanus Toxoid and (CpG-ODN)

In induction of systemic and mucosal immunity, particulate antigens are more effective than soluble antigens possibly because they are more efficiently endocytosed by mucosal-associated lymphoid tissue (MALT) M cells. In this study, we determined the systemic and mucosal immune responses in rabbits following intranasal immunization of tetanus toxoid TT and CpG-ODN encapsulated within PLGA nanos...

متن کامل

Nasal Immunization by (PLGA) Nanospheres Encapsulated with Tetanus Toxoid and (CpG-ODN)

In induction of systemic and mucosal immunity, particulate antigens are more effective than soluble antigens possibly because they are more efficiently endocytosed by mucosal-associated lymphoid tissue (MALT) M cells. In this study, we determined the systemic and mucosal immune responses in rabbits following intranasal immunization of tetanus toxoid TT and CpG-ODN encapsulated within PLGA nanos...

متن کامل

TLR9 signaling failure renders Peyer's patch regulatory B cells unresponsive to stimulation with CpG oligodeoxynucleotides.

Intestinal Peyer's patch (PP) regulatory CD21+ B cells (B(regs)) suppress TLR9-induced innate immune responses. However, it is not known whether TLR9 activation is regulated in PP B(regs). Here, we investigated the responses of PP B(regs) to stimulation with the TLR9 agonist CpG oligodeoxynucleotides (ODN). We observed that PP CD21+ B(regs) express high levels of TLR9 mRNA, but fail to prolifer...

متن کامل

Granulin is a soluble cofactor for toll-like receptor 9 signaling.

Toll-like receptor (TLR) signaling plays a critical role in innate and adaptive immune responses and must be tightly controlled. TLR4 uses LPS binding protein, MD-2, and CD14 as accessories to respond to LPS. We therefore investigated the presence of an analagous soluble cofactor that might assist in the recruitment of CpG oligonucleotides (CpG-ODNs) to TLR9. We report the identification of gra...

متن کامل

A Toll for lupus.

Toll-like receptor (TLR)-9 recognizes CpG motifs in microbial DNA. TLR9 signalling stimulates innate antimicrobial immunity and modulates adaptive immune responses including autoimmunity against chromatin, e.g., in systemic lupus erythematosus (SLE). This review summarizes the available data for a role of TLR9 signalling in lupus and discusses the following questions that arise from these obser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2017